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Abstract

Presented is a factorized quantum lattice-gas algorithm to model the
diffusion equation. It is a minimal model with two qubits per node of a
one-dimensional lattice and it is suitable for implementation on a large
array of small quantum computers interconnected by nearest-neighbor
classical communication channels. The quantum lattice-gas system is de-
scribed at the mesoscopic scale by a lattice-Boltzmann equation whose
collision term is unconditionally stable and obeys the principle of de-
tailed balance. An analytical treatment of the model is given to predict
a macroscopic effective field theory. The numerical simulations are in
excellent agreement with the analytical results. In particular, numerical
simulations confirm the value of the analytically calculated diffusion con-
stant. The algorithm is time-explicit with numerical convergence that is
first-order accurate in time and second-order accurate in space.

Keywords: Quantum computation; qufantum lattice gas; diffusion equa-
tion; type-II quantum computer.

1 Introduction

For the purpose of testing quantum lattice-gas dynamics on a type II quantum
computer (a massively parallel array of small quantum computers) [.],it is pru-
dent to use the simplest of models so that results from prototype experimental

*This work was supported by the Air Force Office of Scientific Research Directorate of

Mathematics and Space Sciences task No. 2304TD.
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implementations can most readily and easily be compared to results obtained by
numerical simulations on conventional computers'. Anothet reason to test sim-
ple quantum lattice-gas models is that the prediction of solutions obtained with
the quantum algorithm can be compared against exact solutions obtained by
analytical means. The simplest lattice-gas models are one-dimensional [.1, 3] and
have only a single conserved quantity, the particle number. The macroscopic
field, well defined in the continuum limit and which corresponds to microscopic
particle conservation, is the mass-density field. The simplest particle conserving
dynamics is diffusion. Therefore, presented in this paper is a quantum lattice-gas
model that can be fised to simulate the behavior of a macroscopic mass-density
field governed by a parabolic diffusion equation in the long-wavelength limit.

The quantum computer is comprised of a large even number of qubits. Each
qubit is a two-energy level quantum system [4, 5]. The high-energy quantum
state is called one and the low-energy quantum state is called zero. The quan-
tum algorithm presented in this paper requires the measurement of these binary
states after the application of every two-qubit quantum gate operation. There-
fore, quantum phase coherence need only persist between only two qubits for
the short duration of time needed to complete a quantum gate operation. Fur-
thermore, the probability of occupancy of the binary quantum states of each
qubit must be accurately measured.

The algorithm presented in this paper is part quantum mechanical and part
classical. The quantum part of the algorithm requires quantum state prepa-
ration, application of a two-qubit quantum gate [6, 7, S], and measurement of
each of the probability of occupancies of the one and zero states of both qubits
involved in each quantum gate operation. Consequently, the state preparation,
quantum gate operation, and measurement process must be either repeated in
time over and over again on a pairs of qubits, or a large ensemble of qubit pairs
must be simultaneously initialized, quantum mechanically operated upon, and
measured in order to obtain a good estimate of the probability of occupancy
of their one and zero states. The classical part of the algorithm involves trans-
ferring information between qubit pairs. This is done by preparing the state
of some qubit in the quantum computer to be equal to the state of some other
qubit that was previously measured in the quantum computer. Classical in-
formation (the probability of occupancy known to some level of precision) is
therefore transferred between qubit pairs.

The algorithm can give rise to nontrivial macroscopic scale behavior of the
quantum computer because the set of qubit pairs that the quantum gates act
upon is different than the set of qubit pairs between which classical state in-
formation is exchanged. The quantum gate operations and the exchange of
classical state information is set up to allow for the computation of the time

A type-II quantum computer prototype is presently under joint development by the Air
Force Research Laboratory and the department of Nuclear Engineering at MIT using a spatial
nuclear magnetic resonance spectroscopic technique. The algorithm presented in this paper,
in particular the unitary quantum gate (8), serves as a baseline numerical test case for the
quantum computing experiment. All the simulation results presented in this paper where
carried on a conventional desktop computer.
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evolution of a factorized quantum lattice-gas system [, 0]..The adjective fac-
torized is used here to indicate that the lattice-gas system undergoes continual
and repeated measurement throughout the system. Looked upon as a many-
body particle system, the kinetic behavior the factorized quantum lattice gas
at the mesoscopic scale2 is described by a Boltzmann equation, whose collision
term is expressible in factorizable form typical of a mean-field approximation to
the collision process.

This paper is divided into four parts. In the first part, §2, we describe the
basic formulation of the quantum lattice-gas algorithm. The collision operator
for the model is a two-qubit quantum gate. In the second part, §3, all the
steps needed to implement the algorithm are explicitly presented. The colli-
sion operator is chosen to be a symmetric matrix. The emergent behavior of
the mass-density field at the macroscopic scale is not biased and, therefore,
causes the particles to drift equally either to the left or the right. As in any
lattice-gas algorithm, the dynamics are reduced to mutually exclusive collision
and streaming events. That is, in a completely artificial and discretized way,
the particles at each site first collide and then they hop to neighboring sites
of the lattice. There are two speed-one particles per site, one particle moves
to the right and the other to the left. The collision operator is homogeneously
and simultaneously applied across the lattice and then the particles hops one
lattice unit to the right and left respectively. Therefore, each and every time
step involves a single application of the collision operator and streaming opera-
tor. In the third part, §4, we analyze the behavior of the model using an exact
lattice Boltzmann equation description that holds at the mesoscopic scale. We
show why the macroscopic scale behavior of the factorized quantum lattice-gas
system is described by a diffusion equation with a constant transport coefficient
of one half for our particular choice of the collision operator. In the forth part,
§5, we carry out numerical simulations and compare the computed results with
the analytical results obtained in §4. Numerical estimates of dispersion and
damping of the mass-density field are in excellent agreement with exact analyt-
ical predictions and this conclusively indicates the macroscopic scale behavior
of the quantum lattice gas is described by a parabolic diffusion equation. The
L 2 norm of the error is also measured for multiple simulations of varying grid
resolutions and we find that the quantum algorithm has numerical convergence
with first-order accuracy in time and second-order order accuracy in space.

2 Model Formulation

Consider the quantum computer with L number of nodes depicted in Figure 1.
There are two qubits per node that may remain phase coherent for a short

2 The mesoscopic scale is a regime between the microscopic and macroscopic scales where

the probability of finding a particle in a local quantum state is well-defined. Although the
occupancy probabilities are continuous quantities at the mesoscopic scale, the mesoscopic
particle dynamics are still spatially and temporally discrete. Continuous field quantities, such
as the mass-density field, are well defined only when the cell size of the mesoscopic lattice
approaches zero, which is referred to as the continuum limit.

3



q, (x., t)) 9 1q2(Xo, t)) ql(xo + ,t)) ® q2(Xo + e,t)) ... ql(xo + (L- 1)ft)) ® 9q2(Xo, + (L - 1)e,t))

node1  node, nodeL

Figure 1: Depiction of a type II quantum computer with L nodes and 2 qubits per node.
The array is one dimensional with periodic boundary conditions. The coordinate xo refers
to the location of the first node. The symbol 0 represents the tensor (or outer) product
operation.

duration in time. Initially, the state of each qubit

lqa(x,t)) = a.10) ±13e11) (1)

is independently set (with the constraint Iaal2 + 113a 2 = 1) so that the on-site
ket, IV(x, t)), is a tensor product over the qubit residing at site x

IV5(x, t)) = qi(x, t)) ® q2 (X, t)), (2)

for all x. Because there are two qubits per site, each on-site ket resides in a four
dimensional Hilbert space. We use the following basis states

I00) 0 01)= 110)1= 1ll)1= . (3)

In this basis, the number operators for the occupancy of qubits Iqi) and 1q2) are
represented by the following matrices

11 = 001 = 0 0 01 (4)
0 0 0 000 0 0I 0 0 1 0J

(/0 00 0 0

The occupancy probability of the at" qubit at site x at time t is defined as follows

f. (X, 0) =- <(V(X, t) I'a 10(X, 0)), (5)

for a = 1,2. We define the "mass density/' field as the sum of the occupancy
probabilities

3

p(x, t) =-fi (x, t) + f 2 (x, t). (6)

In the continuum limit, where the lattice resolution becomes infinite, the mass
density field is considered to be a continuous and differentiable field. Given
an appropriate sequence of quantum gate operations applied to the quantum

3 Here we have taken the mass of a particle to be unity, m - 1.
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computer array depicted in Figure 1, the p field will evolve in time in a diffu-
sive fashion. The dynamics is governed, in the long-wavelength limit, by the
following parabolic partial differential equation of motion of the form

ap 92p

t D- (7)

The value of the diffusion constant, D, is determined by the choice of the quan-
tum gate used to compute outgoing configurations and is also determined by the
discrete particle movement on the one dimensional lattice used in this model.

Let us consider a particle-conserving dynamics. That is, we will choose to
use a two-qubit quantum gate of the form

/1 0 0 0
0j 0 ei'e'ý cos 0 eeCe'C sin 0 0

0-e 4'e-i sin0 e6Oe-i cos 0 0.('
0 0 1/

with a 2 x 2 unitary block which only mixes the states 101) and 110) and thereby
conserves the particle number. This gate U is called the collision operator. So
the outgoing configuration, encoded by the ket 10), is computed independently
on a site-by-site basis as follows

10'(x, t)) -- fl (x, t)). (9)

That is, the collisional operator is applied homogeneously across all lattice
nodes. In general, U will cause quantum superposition and entanglement within
each on-site manifold. The quantum superposition will persist for a length of
time, here denoted by T, corresponding to the spin-spin decoherence time of the
quantum mechanically coupled qubits or until a measurement of the quantum
state is performed.

3 Factorized Quantum Lattice-Gas Algorithm

The factorized quantum lattice-gas algorithm for the one-dimensional diffusion
equation can be implemented in the following three steps. We assume the
initial state of the quantum computer is set as specified in Figure 1, where

Iqa(x,t)) = f(xt)l1) + N/1- fa(xt)l0).

STEP 1: Apply the collision operator simultaneously to all sites

[V"(x,t)) = ajlC(x,t)).

This step accounts for all the quantum computation that is accomplished in a
classically parallel fashion across all nodes of the array.
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STEP 2: Measure ("read") all the occupancy probabilities using the following
matrix element

f;(x,t) -= ¢(~~~l (,)

f (x,t) = (ý'(x,t)jlj2 0'(x,t))

on all sites. In practice, fi and f2 must be determined by either repeated mea-
surement of a single realization of the system or by a single measurement over
a statistical ensemble of systems.

STEP 3: Reinitialize ("write") the state of the quantum computer as a sepa-
rable state where each qubit is set as follows

q2(x,t+ -)) = 1f,(x-e,t)1)+ /1 - Z(x-et)10)
jq2(x,t+Tr)) = f •f(+•,t0l) +V•1 -f2(+,)O

for all x. Note that qubit Iqj) is shifted to its neighboring node at the left and
[q2) is shifted to its neighboring node at the right. This step requires nearest-
neighbor classical communication between all lattice nodes.

ONE TIME-STEP UPDATE COMPLETED.

4 Model Analysis

To model the diffusion equation, we use the following symmetric collision oper-
ator

0 0
0 1 0!i

0- 2 +± (10

0 1 7(0

which is obtained from Equation (8) by choosing the "Euler" angles € -

o , = 0, and C = • We have inserted the phase factor e-4 which does
not affect the outcome of the collision process, but which is nevertheless needed
for a rigorous and strict definition of local equilibrium defined below in Equation
(19). With this collision operator, the outgoing occupancy probabilities ff and
f2 are computed from the incoming occupancy probabilities fl and f2 according
to step 2 of the algorithm specified in the previous section

f* = (¢10iý 1To) (11)
f2' = (V)1(T't2(T,-]),

where 10) = (VTI1)+ -- f 10))®(V9\21)+vT--210)), as stated in §3. These
functional relations between the outgoing and incoming probabilities reduce to
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the following equations

f Vfi (I-f,)± V(1 -fl) f2 2= ~(f, +f2) (12)

1 21½
f' = fif 2 +-+ Vfi(1- f2)±+ V(1- fl)f2 -(fl+f2)2 2

According to this prescription, Equation (12) is guaranteed to keep the mass at.
a site conserved

f + f2 -hf + f2. (13)

We can express the collision Equation (11) along with the streaming operation
as a single lattice Boltzmann equation

fa(x + ea, t +,r) = fa(x, t) + Qa, (14)

where the collision term f2, is expressible in standard factorizable form. In a
classical lattice-gas system, usually the collison term can be written in factorized
form at the mesoscopic scale if particle-particle correlations can be neglected.
That is, if the assumption of molecular chaos is a good one, than the collision
term in general is factorizable so that the probability of occurrence of a local
collision configuration is the product of the probability of the occupancy of the
local states within that configuration. In a quantum lattice-gas system, the
collision term is also factorizable so long as measurements are performed, on a
site-by-site basis, which destroys the quantum correlations between particles.

=0 (010 thl_ - o1i"k) [fa+i(1 - fa) - fa(1 - fa+i)], (15)

for a 1,2 and where el = 1 and e2 = -1. The lattice Boltzmann equation
Equation (14) can be linearized by expanding the collision term to first order
in the fluctuation 1 I1, 12], fla • Zb Jab6fb, where the Jacobian matrix is

/of 1 o"2- (-1 1"(16
Oj 1 1f 2 (16)aQ2 802 2

The eigenvalues and eigenvectors of J characterize the behavior of a lattice-gas
system in the long-wavelength and low frequency limit. The eigenvalues of J are
Ai = 0 and A2 = -1, with eigenvectors ýi = (1, 1) and 2 = (-1, 1), respectively.
The conserved macroscopic field corresponding to the zero eigenvalue is the
mass-density field

" (fl, f2) A +- f2 (17)

as expected.
Local equilibrium of the mass-density field, peq d, occurs when the on-site

particle distribution causes the collision term to vanish, Qa f=f~q = 0, for all a.
In the present case, this occurs when the occupancy probability of the left and
right channels are equal

d
f~q =fq =d (18)
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which is evident from Equation (15). Local equilibrium of the system can also
be defined in terms of the collision operator U by the following constraint

(1o = I~•), (19)

which is also evident from Equation (15) since in this situation Qa j=peq = 0.

Now if we explicitly write out Equation (19) in matrix form

V'_ feqy7 V~j _ fS4 +¾ eq / •)( , q / v ,/r-1f; I
0 0 0 1• VT_/

(20)
we see that the following two equations must be satisfied

-. ,(N v , s± 1•f/r v/7) -f; V7h f; (21)

e4 (ivfT F"q + 1.)eq =q 7 q
v2

2, these local equilibrium conditions reduce to the single identity

e-i• 4

S(1 + i)= 1. (22)

Therefore, we now see why it is necessary to include the phase factor e-im in
the definition of the collision operator so that ( has an eigenvalue of unity value
with an eigenvector corresponding to a local equilibrium configuration.

To derive an effective field theory at the macroscopic scale, let us suppose the
lattice-gas system is everywhere in local equilibrium. That is, let us suppose that
after the. collision step fi (x) = f 2 (x) = d(x) at all sites of the lattice. Then,
without loss of generality, let us consider the particle distributions centered
about x before and after application of the streaming operator. Letting the top
row denote the fi occupancy probabilities and the bottom row the f2 occupancy
probabilities, if before streaming we have

... d(x--) d(x) d(x+) d(X+2) ...
2 2 2 2 2

... d(x-2V) d(Z-D) d(x) d(x~+) d(x+2t) ... '
2 2 2 2 2

then after streaming the occupancy probabilities would be shifted as follows

... • d(_) d(x±+) d(x+21) d(x+&e) ...
2 2 2 2 2

... d(•-) d(x-2) d(-e) d(x) d(x+t) ...
2 2 2 2 2

The density, p(x, t) = fi(x, t) + f 2 (x, t), at site x before streaming is p(x,t) =

d(x) and the density at site x after streaming is p(x, t + -r) - [d(x + f) +

8



d(x - f)]. Therefore, the first finite-difference in time of the mass-density field
is expressible as a second-order difference in space

p(x t -)-p(xt)= -[d(x + ) -2d(x) + d(x - f)] (23)

or

p(x, t +,r) - p(x, t) = 2 [p(x + f, t) - 2p(x, t) + p(x - f, t)]. (24)

In the continuum limit (a fixed box size with the number of lattice points
approaching infinity), the mass-density field is continuous and differentiable.
Therefore, Taylor expanding about x and t to second order in the Knudsen
number 4, Equation (24) can be written in differential point form

Op(x, t) = 2 0 2p(x,t) (25)
at 27 Ox 2

This is the diffusion equation with a constant transport coefficient of 2,r"

5 Numerical Simulation Results

In this section we show several results from one-dimensional numerical simula-
tions of the factorized quantum lattice gas. All the numerical simulations were
carried out using Mathematica.

5.1 Delta Function Initial Condition

The algorithm described in §3 for the factorized quantum lattice gas, with two
qubits per site, for the diffusion equation has the property that it simulates two
non-interpenetrating lattice-gas systems simultaneously. That is, there are two
independent "checker-board" sub-lattices. For illustration purposes, let all even
numbered cells of the lattice be color-coded white and all the odd numbered
cells of the lattice be color-coded black. This defines the two "checker-board"
partitions of the lattice. Any particles initially on the black partition collide
and stream to the white partition and vice versa. This is because each of the
qubits per site move to their nearest neighboring sites which are on the alternate
partition. After a second application of the local, update rule, the particles return
to the original partition. For this reason, particles on the white sub-lattice never
interact with those on the black one. This dual-lattice behavior is shown on the
left column of Figure 2 which are snapshots of the time evolution at every other
time step for a small lattice of size L = 32f. Initially all the particles are
located at the center cell of the lattice. There is a delta function peak in the
mass-density field

p(x, O) = (x L),PI* (26)

4 The dimensionless Knudsen number (Kn) is the ratio of the characteristic mean-free-path
length to the characteristic macroscopic scale of the entire system. In the present case, Kn is
the ratio of the lattice cell size to the size of the box, Kn - 1.
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t=o t•=o
4J 1 4J 1

S0.8 0.8
0 0.6 0.6
~0.4 ~0.4

0i.2 M 0.2
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x x

*14t=2 1 t=2

(0.8 0.8
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S0.4 0.4
50.2 5(0.2
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St=4 t=4
4J1 1

U 0.8 n 0.8
S0.6 0.6

S0.4 0.4
u 0.2 E 50.2

• .5 1015202530 5 1015202530

x x

t=6 t=6
En 0.8 "0 08
S0.6 8 0.6
S0.4 0 0.4
S0.2 M 0.28 8

S5 1015202530 5 1015202530

x x

Figure 2: The initial condition of the mass-density field is set to a delta function in the
middle of a lattice of size L = 32f. Snapshots of the time evolution of the mass-density field
is shown for the case where both qubits are streamed (left column plots) as described in §3
and also for the case where a single qubits is streamed alternatively in both directions (right
column plots) as described in Appendix A. A double lattice effect is observed in the first
case and does not occur in the second case with the improved version of the algorithm.
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where 6(x) = 1 for x = 0 and 6(x) = 0 otherwise. After two time-steps, particles
diffuse two lattice cells away from the center point and there are no particles
occupying the lattice cells immediately neighboring the center one. The double
lattice effect is seen in the subsequent snapshots of the mass-density field.

It is possible to repair this deficiency in the algorithm by allowing only the
state of one of the qubits of a cell to be transferred to the neighboring cell.
The state of the other qubit in the cell remains fixed. The improved version of
the algorithm is described in a step-by-step fashion in Appendix A. With the
improved version of the algorithm, the resulting mass-density field is smoothly
varying across the lattice cell even in this case with the most discrete initial
condition.: This is depicted on the right column of Figure 2.

5.2 Broadening of a Gaussian Packet

0.75
t o

> 0.7
*4J
-H
5 0.65

rd
0.6 t 1024

0.55

0.5 ________________ _

50 100 150 200 250
x

Figure 3: The time evolution of a Gaussian packet of a lattice of size L = 256f for
t = 0,256,512,768,1024r. The packet width is initially a = O.1 and broadens over time as
soon in the figure by over plotting.

The next numerical test of the factorized quantum lattice gas demonstrates'
that the dynamical evolution of its mass-density field is indeed governed by
the diffusion equation. The mass-density field is initialized with a Gaussian
waveform

p(x,o) = +o 1 (27)
4.2

where .the initial packet width is a, = [0 . The Gaussian packet will undergo
diffusive broadening as its width, a(t) = a/o + ±4Dt, increases over time while
its peak amplitude decreases at a rate of 1 The exact analytical solution for

11



the mass-density field at some later time, t, is given by the following expression

1 O' 'ed+4Dt -,(28)

=4 pu+4Dt .2'

where the diffusion constant is D 2 T _2

0.76

t 0.74
.4J

S0.72

0.7 "'

4-3

• 0.68

0.66

0 20 40 60 80 100 120

Time

Figure 4: Time series plot of the temporal decay of a Gaussian packet of a lattice of size
L - 128V for t = 0 up to t = 1287. The packet width is initially a = L1 and broadens in time
as oa = vo + 4Dt where the initial width is ao = 0.11 and the diffusion constant is D = 1

2 T
The packet's amplitude decays at a rate of 1, which is the exact solution plotted as the solid
curve. The plotted data (black circles) taken from the numerical simulation of the factorized
quantum lattice gas are in excellent agreement with the exact analytical solution.

The dispersion rate of the packet can be directly determined by measuring
the decay rate of the peak, since the peak amplitude is proportional to the
inverse of the packet width. The numerical data extracted from the simulation
is plotted along with the exact analytical solution in Figure 4. The agreement
between the numerical simulation and the exact analytical solution is excellent,
which confirms that the dynamical space-time evolution of the mass-density
field is governed by the parabolic diffusion equation.

5.3 Exponential Decay of a Sinusoidal Perturbation

As another test of the factorized quantum lattice-gas model, let us consider an
example problem to illustrate diffusive damping in the continuum limit. We
begin with a lattice with L = 128U sites (or nodes). The mass defnsity field is
initially set to be a sine wave

1 2irx 1
p(x,0) =-sin-+±- (29)

4 L 2

12



1 0.8
4J

0.6

0.4
U)

•0.2

20 40 60 80 100 120
x

Figure 5: Initial sinusoidal perturbation in the mass-density field about a background
density at half-filling do = ½ for a lattice of size L = 128.

This initial mass-density profile is plotted in Figure 5. The boundary conditions
are periodic and remain fixed at all time

1
p(O, t) =p(L, t) = 2 (30)

After repeated application of the collision and streaming operators of the fac-
torized quantum lattice gas, the amplitude of the mass-density wave is observed
to decay in time. To be a solution of the diffusion equation Equation (25), the
mass-density field must have the form

pact(X t) = I 2irx 1
e sin- + _ (31)

4 L ~2'(1

where the damping constant is r - Dk2 , the wave number is k = - and

the diffusion constant is D This is in fact observed in the numerical
simulation which indicates exponential decay of the mass-density profile, as
shown in Figure 6.

A final test of the factorized quantum lattice-gas algorithm as a model of
the diffusion equation is the measurement of its numerical convergence. Mul-
tiple simulations (10 in total) were carried out for lattice sizes ranging from
L = 64f, 128, 256f,... up to L = 3276Sf In each case the initial state of
the simulation was a sinusoidal perturbation of the mass-density field about
half-filling according to Equation (29). Each simulation was run for T = 64T
time-step iterations and the numerical error, denoted e, from the exact solution

13



0.75

nd 0.7

4J)"- 0.65
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0.55

0.5
0 1000 2000 3000 4000

Time

Figure 6: Exponential damping of a sinusoidal profile by action of mass diffusion. The1 1 • 2 ½
solid curve is the predicted envelope -e- g1 + 1. The plotted data (black circles) taken
from the numerical simulation of the factorized quantum lattice gas are in excellent agreement
with the theoretical envelope.
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10-7
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1 0-11 /e
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Figure 7: Log-log plot of the numerical error versus resolving grid cell size, Jx, indicating
the the convergence property of the factorized quantum lattice-gas algorithm for the diffusion
equation described in §3. The data (black circle) are taken from numerical simulations with
grid sizes from L = 649 up to 32768t with a fixed number of time steps T = 64,r. The
solid curve is a best-fit linear regression with a slope of 4.471 indicating at least second-order
convergence in space.
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was then measured using the following formula

c(L) (UL Z [P(x) p ...... (x)]2 , (32)

where the exact solution for the mass-density field is
1 1r2)2T . 27rx Ip !t((x) = e- -f - sin -+ -2 (33)

4 ~~x L 2*

We define the grid resolution as the inverse of the total number of lattice points.
That is, for a box of size 1, the resolving cell size is defined as 5x = . A plot
of the error versus the resolution is given in Figure 7. As the resolution is
increased, the error drops off as c(L) - L 4

.
471. The factorized quantum lattice-

gas algorithm has numerical convergence that is at least second-order accurate
in space and first-order accurate in time.

6 Conclusion

In this paper, we illustrated a factorized quantum lattice-gas algorithm that
can be used to model the behavior of a mass-density field governed by the dif-
fusion equation. For simplicity, the model is worked out in one-dimension, but
can straightforwardly be generalized to higher dimensions.5 All the algorithmic
steps needed to implement the model were explicitly laid out. Furthermore, to
validate the model, several numerical tests were performed in Mathematica sim-
ulations to check the numerical stability of the algorithm and to check whether
the dynamical behavior of the quantum lattice-gas system behaves as expected.

To test numerical stability, an initial mass-density profile with maximally
steep gradients was used: a delta function. No numerical overflow occurred and
the algorithm temained unconditionally stable regardless of the number of time
steps. It was noted that two independent sub-lattices are simultaneously simu-
lated in the simplest form of the quantum algorithm, but this can be remedied
using an improved version of the algorithm given in the appendix. Symmetrical
broadening of a Gaussian packet was also tested and the macroscopic behavior
of the model matched the analytical solution of dispersion in the diffusion equa-
tion. Finally, the decay of a sinusoidal profile was tested and the comparison
of the numerical to the analytical result was also presented in this paper. The
amplitude of the sinusoidal profile decays exponentially in time while the profile
remains a perfect sinusoid, and agrees with the analytical solution for damping
in the diffusion equation. These numerical tests conclusively demonstrate that
the macroscopic dynamics of this factorized quantum lattice-gas model is indeed
governed by a parabolic. diffusion equation. The factorized quantum lattice-gas

5 In a 2D or 3D simulation, for example, still only two qubits per site is required as in
the 1D case. This is because the 1D update rules, Equation (14), can be applied along each
dimension independently in succession.
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algorithm was found to numerically convergence to the exact analytical solutions
with first-order accuracy in time and second-order accuracy in space.

* The reason for using this quantum lattice-gas algorithm over say an un-
conditionally stable classical implicit algorithm known for diffusion is that this
quantum algorithm can be directly implemented on a type-IT quantum com-
puter whereas known classical algorithms cannot because of their non-unitary
formulations. For the quantum lattice-gas algorithm to be implemented on a
quantum computer with an array of qubits that can only be superposed and
entangled for a short duration and only over short distances, periodic ensemble
mehsurement of all the occupancy probabilities must occur at each and every
time step. The measurement process breaks the unitarity of the algorithm, but
does so in the least destructive of ways. The measurement process gives rise to
a kind of controlled'decoherence that mimics the effect of molecular chaos in
classical many-body kinetic theory. Therefore, the measurement process causes
the collision term in the quantum lattice-Boltzmann equation to be expressible
in a factorized or "mean-field" form. The subsequent collapse of the wavefunc-
tion into a tensor product state is done in such way as to conserve the local
mass at each site, and thereby conserves the total mass of the system. Further-
more, given the measurement process, the mesoscopic lattice-gas dynamics is
described by a lattice-Boltzmann equation that obeys the principle of detailed
balance.

All quantum lattice-gas algorithms are unconditionally stable during the
course of the simulation run, including this algorithm for the diffusion equation,
when implemented on a conventional classical computers where the round off
error of the floating-point representation (using say a 64-bit word with a 52-bit
mantissa) of real valued quantities is on the order of a part in 1015. The stability
of the quantum lattice-gas algorithmn derives from the representation of the
collision operator by a unitary matrix. Yet the stability of the algorithm running*
on a type-IL quantum computer will depend on the accuracy limitations for
measuring the expectation values of the binary states, representing the desired
quantum gate by control pulses, and re-preparing the quantum wavefunction
during every time step iteration.

This last point can be analytically derived in the most general situation
where the unitary collision matrix, Equation (8), has an arbitrary set of Euler
angles. In the case when C = ý, the diffusion equation becomes the governing
effective macroscopic field equation. However, in the more general case when

7ý $, the governing field equation is the nonlinear Burger's equation. The
analysis and numerical simulation of the factorized quantum lattice gas in this
general case is treated in a subsequent paper [.13].

It is not claimed here that the computational complexity of simulating the
one-dimensional diffusion equation is reduced in any way by exploiting efficient
parallel computation derived from using the quantum mechanical principle of
superposition of states. In fact, in the present model, only the quantum states of
two qubits are in superposition any time following a quantum gate operation and
prior to measuring the expectation value of the binary states of each qubit. The
quantum gate operation is represented by a 4 x 4 unitary matrix. Therefore, from
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a classical point-of-view, its action is computationally equivalent to multiplying
a 4-component complex vector by a 16 component unitary matrix. This in turn
is equivalent to 64 floating-point multiplies and 640 floating-point additions,
or 704 floating-point operations in total. A present day classical computer
running at a gigaflop rate could compute this quantum gate operation in under
a microsecond. In contrast, in the NMR-based type-II quantum computer using
the chloroform molecule for example, the gate operation occurs within one spin-
spin decoherence time, and one step of the algorithm isn't repeated until after
the spin relaxation time, about half a minute for chloroform. Therefore, there is
no speed-up obtained in the quantum apparatus versus a conventional gigaflop
desktop computer. However, if a more complex quantum lattice-gas model were
implemented with n qubits per node where n is a large number, the classical
computer would have to do a matrix multiply of size 2' x 2', so the total number
of required floating-point operations scales exponentially in n. Therefore, a type-
II quantum computer implementation of a quantum lattice-gas algorithm could
outperform any classical computer implementation of the same algorithm when
the number of qubits per node is large, provided the number of control pulses
needed to implement the 2' x 2n unitary matrix as a sequence of quantum gate
operations scales polynomially in n. We are currently trying to experimentally
determine the scaling behavior of the number of required control pulses Versus
the number of qubits per node and this will be presented in a subsequent paper.
The quantum algorithm for the one-dimensional diffusion equation serves as a
test case in this regard.
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A Improved Algorithm

The algorithm described in this appendix uses a variant of the typical lattice-gas
update procedure. First of all, there are two particles per site, but only one of
them is a moving particle. The other is a stationary or rest particle. The moving
particle hops in both directions (and this is not typical in lattice-gas models).
The collision operator is homogeneously applied across the lattice and then the
moving particle hops one lattice unit to the right. The collision operator is
then homogeneously applied again across the entire lattice and then the moving
particle hops one lattice unit to the left. The moving particle must hop in
both directions to keep the macroscopic dynamics unbiased and symmetrical.
Therefore, each and every time step involves two applications of the collision
operator and streaming operator.

The factorized quantum lattice-gas algorithm for the one-dimensional diffu-
sion equation can be implemented with two passes as defined in the following
six steps (two groups of three). This version of the algorithm is considered to
be an improvement over the simpler version given in §3 because it remedies the
problems of coexisting independent sub-lattices. Spurious high frequency noise
is thereby removed from the time variation of the macroscopic mass-density field
as well. We assume the initial state of the quantum computer is set as specified
in Figure 1, where Iqa(x,t)) i T7t)11) + V'1 - fa(x,t)IO).

STEP 1: Apply the collision operator simultaneously to all sites

14'(x, t)) : = (,t>

This step accounts for all the quantum computation that is accomplished in a
classically parallel fashion across all nodes of the array.

STEP 2: Measure ("read") all the occupancy probabilities using the following
matrix elements

fl (x,t) = (,1iO(,
2f ' ( x , t ) -- ¢ ( , t 1 2 I ' x )

on all sites. In practice, fi and f2 must be determined by either repeated mea-
surement of a single realization of the system or by a single measurement over
a statistical ensemble of systems.

STEP 3: Reinitialize ("write") the state of the quantum computer as a sepa-
rable state where each qubit is set as follows

Iql(x,t + 7)) = f , t) 11) + v1 - f (X, t)10)

1q2(x,t+-)) = f'(x+e, t1) + f1-f'(x+et)1O)

for all x. Note that qubit 1q2) is shifted to its neighboring node at the right.
This step requires nearest-neighbor classical com-munication between all lattice
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nodes.

STEP 4: Apply the collision operator again as in STEP 1.

STEP 5: Measure ("read") the occupancy probabilities again as in STEP
2.

STEP 6: Reinitialize ("write") the state of the quantum computer as a sepa-
rable state where each qubit is set as follows

Iqi(x,t)) = V (x+t)j1) 1- fi(xt)I0) (34)

jq2(x,t)) = V/f2(x-e,t)ll)+ 1-f 2(x-e,t)IO) (35)

for all x. Note that qubit 1q2) is shifted to its neighboring node at the left. This
step requires classical communication between all lattice nodes.

ONE TIME-STEP UPDATE COMPLETED.

With this improved version of the quantum algorithm, the diffusion constant
that arises in the effective field theory is D'mP 1 L, half the value the diffusion
constant that arises from the simpler version of the algorithm presented in §3.
The reason for the reduction in dissipation is that the diffusion constant goes
as the ratio of the square of the mean-free path length to the mean-free colli-
sion time. In the simple version of the quantum algorithm, the mean-free path
length goes as the lattice cell size t and the mean-free collision time is the time
of a single update 'r. However, in the improved version of the algorithm, the
collision frequency is doubled, so effectively both the mean-free path length and
the mean-free collision time are halved. Consequently, the value of the transport
coefficient is halved, DimP D

2"
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